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Abstract. The high-frequency response of electrons in double quantum wells (DQWs) under an
in-plane magnetic field is considered. The absorption, the Voigt effect and the transverse dipole
moment due to electron transitions between tunnel-coupled levels are calculated for excitation
by an electric field parallel to the 2D plane; the depolarization field, which is perpendicular to
the 2D plane, is also taken into account. Strong modification of the intersubband absorption
spectrum (the appearance of two absorption peaks, which demonstrate different collisionless
broadening and shift) is found under increasing magnetic field. The spectral dependencies of
the Voigt effect and induced dipole moment are calculated. Such dependencies are different
in essence for small magnetic fields, for which both tunnel-coupled states are occupied; for
intermediate magnetic fields, for which the Fermi level intersects the anticrossing gap; and for
large fields, for which the electrons are localized in two valleys of the lowest level. Numerical
estimates of these effects are presented for typical DQW structures.

1. Introduction

Electron transport phenomena and optical processes in DQWs have been widely studied
in the past (see references in [1, 2]). Peculiarities of such phenomena in DQWs under
an in-plane magnetic fieldH are related to modification of the energy spectra of tunnel-
coupled pairs of levels originating from the ground states of left (l-) and right (r-) QWs.
Apart from the increase of the level splitting and the shift of the dispersion curve minima
of uncoupled QWs in the plane of 2D momentump, an anticrossing of these curves (and,
therefore, an additional minimum) appears [3] in sufficiently strong magnetic fields. These
modifications of the energy spectrum not only change the magnetotransport phenomena [4–
7] and processes under interband optical excitation [8, 9], but also lead to peculiarities in the
response to the high-frequency electric field. In conditions where ¯hω (ω is the frequency) is
smaller than the energies of the next intersubband transitions, such a response is determined
by the contribution of the electron transitions between tunnel-coupled levels. The response
is substantially affected by the above-mentioned modifications of the electron spectrum, if
ω is larger than the typical scattering rate.

In this paper, consideration of the absorption, the Voigt effect, and thetransversedipole
moment due to electron transitions between tunnel-coupled levels is presented for excitation
by an in-plane electric field. The spectral dependencies are different for low electron
densities—for which only the lowest of the tunnel-coupled levels is occupied—and for high
densities—for which with increasingH three different cases are realized: (i) smallH , when
the electrons populate both levels; (ii) intermediateH , when the Fermi level intersects the
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anticrossing gap; and (iii) largeH , when the electrons are localized in two separate valleys
of the lowest level. Under an in-plane magnetic field, intersubband transitions in DQWs are
allowed not only for the component of the electric field transverse to the DQW plane, but also
for the longitudinal electric field component (such a mechanism has been discussed earlier
in connection with intersubband transitions in inversion layers [10]). The broadening of the
absorption peaks for such transitions is determined by collisional smearing of these peaks
as well as by collisionless broadening caused by the difference between the nonparabolic
dispersion laws of the tunnel-coupled states. In addition, due to shifts of the minima from
p = 0, the square-root singularity of absorption appears in the collisionless approximation
at the lower edge of the absorption region (which is independent ofH ) if the effect of
the depolarization is neglected. Transformation of the linearly polarized high-frequency
wave to an elliptically polarized wave—the Voigt effect—is possible due to anisotropy of
the electron dispersion laws in the 2D plane. In the collisionless approximation, the effect
of the depolarization, as we will show, can lead to a strong increase of the Voigt effect,
due to virtual intersubband transitions, and to an additionalδ-shaped absorption peak at a
frequency within the upper region of transparency. It is shown that these resonant effects
are more likely to be observed in the DQWs with substantial tunnel coupling and they
strongly depend on the value ofH (for example, they are absent in case (iii)). One more
effect is the appearance of a high-frequency dipole moment across DQWs, which is induced
by an in-plane electric field perpendicular to theH-direction (the Hall geometry). Such
an induced transverse dipole moment can lead to excitation of the waveguide modes that
propagate along the DQW plane. In addition, properties of the depolarization field, which
appears in the self-consistent description of the response, are modified substantially due
to the transverse contribution. Such calculations of the depolarization effect are similar
to the scheme developed in [11, 12] (the case of wide parabolic QW [12] is similar to
the DQW case, because in both cases the energy spectra are strongly modified under
an in-plane magnetic field). As a result of our calculations, expressions for the two-
dimensional conductivity and longitudinal–transverse susceptibility are obtained, and the
pertinent characteristics of the high-frequency response are determined.

The paper is organized as follows. In section 2 we present basic relations describing
the effective response of the system under consideration. The spectral dependencies of the
response function and its dependence on the magnetic field and tunnelling matrix element
are studied in section 3. The consideration of the absorption, the resonance Voigt effect and
the longitudinal–transverse susceptibility is described in section 4. In section 5 we present
concluding remarks.

2. Basic relations for the response

Modification of the electron spectra in DQWs under an in-plane magnetic [3] field is
described within the basis of the orbitals of the l- and r-QW states (denoted below as
φlz andφrz), i.e., using an ‘isospin’ representation [13]. Assuming that the magnetic field
does not change these orbitals and the tunnel matrix elementT significantly, we have in
such a representation the 2× 2 matrix Hamiltonian

ĥp = εp +
[

1(py)/2 T

T −1(py)/2

]
. (1)

Here εp = p2/2m, p = (px, py) is the 2D momentum, andm is the effective mass. In
the magnetic fieldH ‖ 0X, the level splitting1(py) appears to be dependent on the 2D
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momentum as follows:

1(py) = 1 − 2vHpy + δH (2)

where1 is the level splitting of the ground states in the l- and r-QWs without tunnelling,
and the typical velocityvH = ωc 1z/2 is represented through the cyclotron frequencyωc

and the distance between the centres of the left and right QWs,1z. The contribution in
equation (2) quadratic inH , δH , is usually negligible, because 2δH � εH (hereεH = mv2

H is
the energy characterizing the influence of the in-plane magnetic field on the DQW system).
Moreover, in the case of a symmetric (1 = 0) DQW structure,δH = 0. According to the
Hamiltonian (1) the dispersion lawsε±p and the velocity operator̂vp are anisotropic:

ε±p = εp ± 1T (py)/2 1T (py) =
√

12(py) + (2T )2. (3)

In addition, they-component ofv̂p has the matrix addendum given by

(v̂p)x = px

m
(v̂p)y = py

m
+

[
vH 0
0 −vH

]
. (4)

The above-described peculiarities of the electron dynamics give rise to a possibility of
excitation of the intersubband transitions by they-component of the field, collisionless
broadening of the pertinent peaks, and the appearance of a transverse dipole moment.

We begin the calculation of the response of the collisionless quasi-two-dimensional
electron system in the DQWs to the in-plane high-frequency external electric field

E exp(−iωt)

(the factor exp(−iωt) is omitted below) by writing the perturbation operator (including the
induced depolarization contribution) as

δĥp = ie

ω
E · v̂p + ŵω. (5)

The matrix electrostatic potential̂wω appears due to redistribution of the electron charge in
the DQWs caused by the external electric field, and is determined from the Poisson equation
[11, 14] as

(ŵω)jj ′ =
∫

dz φjzwzφj ′z wz = −4πe2

ε

∫ z

−∞
dz′ (z − z′) δnz′ (6)

where the dielectric permittivity,ε, is taken as uniform across the DQWs. The potentialwz

should be calculated on the basis of the orbitals of the l- and r-QWs (in the same way as
the components of the matrix Hamiltonian (1) were).

The induced charge density in (6),e δnz, can be written using the orbitalsφjz and the
self-consistent nonequilibrium addendum to the density matrix,δρ̂pω, as

e δnz = e
∑
jj ′

δnjj ′ φjzφj ′z δn̂ = 2

L2

∑
p

δρ̂pω. (7)

Here j, j ′ = l, r, the factor 2 is due to the assumed spin degeneracy, andL2 is the
normalization area. To simplify the notation, we omit argumentω in wz, δnz, δn̂. The self-
consistent addendum to the density matrixδρ̂pω linearized on the basis of the perturbation
(5) can be represented using the equilibrium density matrix,ρ̂eq , as

δρ̂pω = − i

h̄

∫ 0

−∞
dτ e(λτ−iωτ)e(i/h̄)ĥpτ

[
ie

ω
E · v̂p + ŵω, ρ̂eq

]
e−(i/h̄)ĥpτ (8)
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where λ → +0 in the collisionless case, and it can be replaced by0/h̄, where
phenomenologically introducing the broadening0 provides the possibility of estimating
the smoothing of the spectrum peculiarities due to collisions.

Substituting (8) into (7) and using the relation between the matricesŵω and δn̂

(following from (6) and (7)), we express the depolarization contribution in the perturbation,
ŵω, through the external perturbation. Neglecting the exponentially small overlapping of
the orbitals in the expressions given above (only the tunnel contribution in (1) describes
a mixing of the states of the l- and r-QWs), we can consider the matricesŵω and δn̂ as
diagonal. Due to the conservation of the total electron charge in the DQWs, tr(δn̂) = 0,
the depolarization contribution can be described through the interwell redistribution of the
concentration1nω = tr(σ̂z δn̂)/2, according to relation

ŵω = (2πe2 1z/ε)α 1nω σ̂z (9)

in which σ̂z is the Pauli matrix, and the trace is taken over the discrete isospin variable.
For 1nω we have the inhomogeneous equation

1nω − α5(ω) 1nω = −i
εEyvH

2πe 1z ω
5(ω). (10)

Here5(ω) is the response function, typical for the Kubo formalism. It is given by

5(ω) = −2π ie2 1z

h̄εL2

∫ 0

−∞
dτ e(λτ−iωτ)

∑
p

tr(ρ̂eq [e−(i/h̄)ĥpτ σ̂ze
(i/h̄)ĥpτ , σ̂z]). (11)

In (9) and (10) the dimensionless constant of the Coulomb interaction in the DQWs,α, is
given as

α =
∫ ∞

−∞
dz (φ2

lz − φ2
rz)

∫ z

−∞
dz′ (z − z′)(φ2

rz′ − φ2
lz′)/1z. (12)

In the flat-band DQWs,α ≈ 1 − 0.21d/1z; d is the width of a QW,1z ≈ d + db, anddb

is the barrier width.
The induced current density,δJω, can be written using (8) as

δJω = i
e2n

mω
E + 2e

L2

∑
p

tr(v̂p δρ̂pω) (13)

wheren is the total electron density in DQWs. Due to the redistribution of the electron
density discussed above, a transverse dipole moment is induced by the fieldEy ; this can be
expressed as

δPω = e

∫ ∞

−∞
dz z δnz ≈ −e 1z 1nω (14)

and the contribution toδPω due to the fieldEx is equal to zero according to the absence
of a Lorentz force for such geometry. Using the expression for1nω determined by (10)–
(12), and introducing the components of the effective conductivity tensor via the relation
δJω = σ̂ (ω)E, we have for the diagonal components of the conductivity

σxx(ω) = i
e2n

mω
σyy(ω) = i

e2n

mω
+ i

εv2
H

πω 1z

5(ω)

1 − α5(ω)
(15)

and the nondiagonal components are equal to zero. This property and the absence of
the intersubband contribution inσxx follow from the form of the velocity operator (4).
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Analogously, from (14), the dimensionless longitudinal–transverse (i.e., expressing thez-
component of the dipole moment as a response to they-component of the electric field)
susceptibilityχ⊥(ω) = δPω/(Ey 1z) is obtained as

χ⊥(ω) = −i
εvH

2πω 1z

5(ω)

1 − α5(ω)
. (16)

Hence we should calculate5(ω) given by (11) and the kinetic coefficients (15) and (16).

3. The response function

Here we will calculate the response function5(ω) from (11) in the case of strongly
degenerate electrons, using the dispersion law (3), the matrix elements ofσ̂z, and the
calculation of the trace on the basis of the eigenfunctions of (1). Thus we obtain the
response function as

5(ω) = 2πe2 1z

εL2

∑
j,j ′,p

2(εF − εjp) − 2(εF − εj ′p)

εjp − εj ′p + h̄ω + i0
{[1(py)/2T ]2 + 1}−1 (17)

where2(x) is the step function andεF is the Fermi energy. The Fermi energy depends
on the magnetic field and DQW parameters and must be determined from the conservation
law for the total electron concentration:

n = 2

L2

∑
p

2(εF − εjp). (18)

Neglecting the effect of the depolarization (i.e., formally assumingα = 0 in the formulas
above), we find that(σyy−σxx) andχ⊥ are proportional to5(ω). As a result, the absorption,
the phase shift in the Voigt effect, and the induced dipole moment are expressed through
the response function. In addition, the properties of5(ω) itself are interesting: when the
effect of depolarization is taken into account and the condition

1 − α5(ωG) = 0 (19)

can be satisfied for realωG, the spectral dependencies ofσyy andχ⊥ must be substantially
modified in the spectral regionω ≈ ωG. It is clear that (19) can be satisfied only if
Im 5(ωG) = 0 and the possibility of satisfying (19) is essentially related to the properties
of 5(ω).

In this section we will calculate5(ω) and conditions for the appearance of a solution
of (19) in the collisionless approximation. From (17) we have

Im 5(ω) = 2e2(T /h̄)2 1z

εv2
Hh̄ω

{[2εHεF + T 2 − (h̄ω/2)2 − εHh̄ω]1/2

− [2εHεF + T 2 − (h̄ω/2)2 + εHh̄ω]1/2}[(h̄ω/2)2 − T 2]−1/2 (20)

and Im5(ω) is finite in the region 2T/h̄ < ω < ωm; here h̄ωm/2 = εH + (T 2 + ε2
H +

2εHεF )1/2 > T and, hence,ωm → 2T for H → 0. Using the Kramers–Kronig relation, we
can express the real part of5(ω) as

Re5(ω) = 2

π

∫ ∞

0
dξ

ξ Im 5(ξ)

ξ2 − ω2
. (21)

Since Im5(ω) 6 0, it then follows that Re5(ω) < 0 for ω < 2T/h̄ and Re5(ω) > 0
for ω > ωm. In addition, forω > ωm the function Re5(ω) goes monotonically to zero
with increasingω. Hence, equation (19) has an only root, in the region whereω > ωm,
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if α5(ωm) > 1. At ω = ωm, assuming that the magnetic field is not too strong, so that
2εH/T � 1, we obtain

α5(ωm) ≈ α(1z/aB)(T /2εH ) (22)

whereaB is the effective Bohr radius. To be specific we will consider numerically two
DQWs based on GaAs/AlxGa1−xAs with parameters:T = 2.6 meV, n = 2.5 × 1011 cm−2

(case I) andT = 1.3 meV, n = 1.25× 1011 cm−2 (case II); for both DQWs it is assumed
that 1z = 130 Å, α ≈ 0.84 and1 = δH = 0. We notice that for the model of flat-band
symmetric DQWs the conditions stated above can be satisfied ifd = 100 Å, db = 30 Å,
and x = 0.38 (x = 0.55) for case I (II). Below, we denote these DQWs as I-DQWs and
II-DQWs. Then from (22),α5(ωm) ≈ 1.1(T /2εH ) � 1, i.e., equation (19) should be
satisfied. As follows from (19) and (22), the appearance of the rootωG is possible in DQW
systems under rather strongH , provided that the ratio1z/aB and the tunnelling matrix
elementT are not too small.

Figure 1. Energy dependencies of the collisionless response function in I-DQWs for the cases:
(i) H = 2 T, curves 1 and 2; (ii)H = 8 T, curves 3 and 4; and (iii)H = 12 T, curves 5 and
6. The solid curves 1, 3 and 5 showα Re5(ω) and 10α Re5(ω), respectively. The dashed
curves 2, 4 and 6 showα Im 5(ω) and 10α Im 5(ω), respectively. For curve 1 the minimum
is close to−14.5.

The case of I-DQWs is illustrated in figure 1, where we plot Im5(ω) given by (20),
and Re5(ω) as functions ofω for the cases: (i) atH = 2 T, curves 1 and 2; (ii) at
H = 8 T, curves 3 and 4; and (iii) atH = 12 T, curves 5 and 6. Solid curves 1 and 3 show
α Re5(ω), and solid curve 5 shows 10α Re5(ω). Dashed curves 2 and 4 demonstrate
α Im 5(ω), and dashed curve 6 shows 10α Im 5(ω). The behaviour of the energy spectra
for cases (i)–(iii) is discussed in section 1. In figure 2 we plot the same dependencies (e.g.,
curve 2 in figure 1 and curve 2 in figure 2 correspond toα Im 5(ω) for case (ii), for which
the Fermi level intersects the anticrossing gap and only the lowest of the tunnel-coupled
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Figure 2. As figure 1, but for II-DQWs (see the parameters in the text) for cases (i), (ii) and
(iii), H = 2 T, 7 T and 10 T, respectively. Other parameters and notation are the same as those
for figure 1. For curve 1 the minimum is close to−7.5.

levels is occupied) for the II-DQWs; hereH = 2 T, 7 T, and 10 T for the cases (i), (ii),
and (iii), respectively. From figures 1 and 2 it follows, consistently with our analytical
consideration, that only forH = 2 T, for which both tunnel-coupled levels are occupied, is
it possible to satisfy equation (19), while strongerH suppresses this possibility. In addition
(see also (22)), since the value of(T /2εH ) for case (i) in figure 2 is two times smaller than in
figure 1,α5(ωm) (> 1) in figure 2 is also approximately two times smaller than in figure 1.
Notice that the behaviour of the curves 1 and 3 in the lower half-plane is qualitatively
similar (in figure 1 and in figure 2); for curves 1 in figures 1 and 2 the minimum values are
approximately equal to−14.5 and−7.5, respectively. In correspondence with the above
remarks (see also below), the groups of curves (2, 4, 6) and (1, 3, 5) in figures 1 and 2
demonstrate also, in arbitrary units, the absorption and the phase shift in the Voigt effect,
respectively (without the effect of depolarization). Because of the contribution of virtual
intersubband transitions (appearing due to modification of the selection rules), an increase
of the Voigt effect takes place near the lower absorption edge ¯hω < 2T , if the effect of
depolarization is neglected. In the next section we will show that this increase vanishes
completely when the effect of depolarization is taken into account.

4. Spectral dependencies of responses

In this section we will take into account the effect of the depolarization. In our numerical
study we will treat, besides the collisionless approximation, the case of the finite broadening
energy 20 = 0.2 meV, which makes it possible to estimate the smoothing of the spectral
peculiarities due to collisions (notice that this value of0 corresponds to a mobility
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Figure 3. Energy dependencies of the absorptionξω (in per cent) for I-DQWs and magnetic
fields, in cases (i)–(iii), as for figure 1. In figures 3–8: dashed curves (1, 3, 5) correspond to
the collisionless approximation; solid curves (2, 4, 6) correspond to the finite level broadening
20 = 0.2 meV. Curve 1 at ¯hω ≈ 10 meV representsδ-function behaviour.

approximately equal to 8.5 × 104 cm2 V−1 s−1, which is rather small for the GaAs-based
DQWs). In this section, dashed (solid) curves 1, 3, 5 (2, 4, 6) in figures 3–8 plot the results
obtained in the collisionless approximation (for the finite0).

4.1. Absorption

It is appropriate [15] to introduce a dimensionless valueξω = 2 Re(Eσ̂ (ω)E)/S which
is determined by the ratio of the power absorption in the DQWs to the Poynting vector
S = (c

√
ε/2π)|E|2 for the external field. Only theEy-component of the electric field

contributes in the power absorption in the DQWs. ForE ‖ 0Y , we have

ξω = 4π

c
√

ε
Reσyy(ω). (23)

From (15) and (23) it follows thatξω 6= 0 only in the region where Im5(ω) 6= 0, if ω 6= ωG.
However, in the collisionless approximation, atω ≈ ωG we have a delta-function form of
ξω, i.e., the resonant enhancement of absorption atωG. For finite0 this peak acquires finite
width and height.

In figure 3 we plotξω for I-DQWs and magnetic fields, corresponding to cases (i)–(iii),
as for figure 1. Comparing figure 3 with the curves in figure 1 that representξω in the
absence of the depolarization effect, we can see that in cases (i) and (ii), forH = 2 T
andH = 8 T, this effect removes the square-root divergence at ¯hω → 2T . In addition, it
strongly suppresses absorption within the region 2T/h̄ < ω < ωm in case (i). However,
it slightly changes the absorption in the main part of the absorption region for case (ii).
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Figure 4. Energy dependencies of the absorption for I-DQWs in case (i):H = 2 T for curves
1 and 2;H = 3 T for curves 3 and 4; andH = 4 T for curves 5 and 6. Curve 1 and the part
of curve 2 forh̄ω 6 7.35 meV represent 10ξω.

Similar changes are small over the whole of the absorption region for case (iii). Curve 1 at
h̄ω = h̄ωG ≈ 10 meV represents the delta-function behaviour ofξω. At finite 0, this peak,
as is seen from curve 2, has a finite width and height but still shows a substantial resonant
enhancement of absorption atω ≈ ωG.

In figure 4, for I-DQWs and magnetic fields corresponding only to case (i) (H = 2 T
for curves 1 and 2,H = 3 T for curves 3 and 4,H = 4 T for curves 5 and 6),ξω is
plotted as the curves 3–6 and with the part of curve 2 for ¯hω > 7.35 meV. Curve 1 and the
part of curve 2 for ¯hω 6 7.35 meV show 10ξω. Notice that forωm > ω > 2T/h̄, curves
1 and 2 practically coincide: here ¯hωm ≈ 7.35 meV. The maxima of curves 2 and 4 are
close to 1.0 and 1.3, respectively. The curves in figure 4 demonstrate that with increasing
H , the frequency (and the amplitude) of the resonance absorptionωG increases before the
disappearance of this resonance. AsH → 0 the amplitude (i.e., the integral strength) of
the resonance absorption atωG will go to zero asH 2; hereωG/2T → (1 + 2α 1z/aB)1/2.
From figure 4 (in the collisionless approximation) it follows that the upper boundary,ωm,
of the lower absorption peak quickly increases with increasingH . At the same time, the
position of theδ-function absorption peak,ωG, increases much more slowly. Therefore,
for sufficiently largeH the two peaks overlap. As a result, the spectral dependence of the
absorption becomes smooth for all frequencies.

For the II-DQWs and magnetic fields, in cases (i)–(iii), as for figure 2, in figure 5 we
plot ξω as curves 1–4 and 10ξω as curves 5 and 6. Comparing these dependencies with
the curves in figure 2 (which representξω in the absence of the depolarization effect), we
can see that in cases (i) and (ii), forH = 2 T and H = 7 T, this effect removes the
square-root divergence for ¯hω → 2T . In addition, it strongly suppresses absorption within
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Figure 5. Energy dependencies of the absorption for II-DQWs and magnetic fields corresponding
to cases (i)–(iii), as in figure 2. Curves 5 and 6 show 10ξω. Curve 1 ath̄ω ≈ 5.2 meV represents
δ-function behaviour.

the main part of the region 2T/h̄ < ω < ωm in case (i) (here ¯hωm ≈ 4.6 meV). However,
it only slightly changes the absorption in the main part of the absorption region for case
(ii). Similar changes are very small over the whole absorption region for case (iii). In all
three cases, (i)–(iii), the relative change due to the depolarization is substantially smaller
in DQWs with smallern and T , as follows from a comparison of figures 3 and 5 with
figures 1 and 2. Curve 1 at ¯hω = h̄ωG ≈ 5.2 meV represents delta-function behaviour of
ξω. At a finite 0, this peak, as is seen from the curve 2, has some finite width and height
but still shows a substantial resonant enhancement of the absorption atω ≈ ωG.

The absorption caused by theEz-component (perpendicular to the DQW planes) can
be described in a similar way. Effective components of the conductivity are related as
σzz(ω) = (ω/ωc)

2[σyy(ω)−σxx(ω)]. As in [12], it appears that the ratio Reσzz(ω)/Reσyy(ω)

is equal to(ω/ωc)
2. Therefore, the spectral dependencies of the absorption in this case can

be deduced from the dependencies represented above with their multiplication by the factor
(ω/ωc)

2.

4.2. The Voigt effect

Transformation of the linearly polarized high-frequency wave to the elliptically polarized
wave (the Voigt effect) can be characterized [16] by the phase shiftδω = Im(E′

y/E
′
x)Ex=Ey

,
whereE′ is the total electric field transmitted through the DQWs. This expression forδω

is valid when|δω| � 1. Then we have

δω ≈ 2π

c
√

ε
Im [σxx(ω) − σyy(ω)] = 4πvH

c
√

ε
Im [χ⊥(ω)]. (24)
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Figure 6. Energy dependencies of the phase shiftδω (in degrees) in I-DQWs for the cases:
(i) H = 2 T, curves 1 and 2; (ii)H = 8 T, curves 3 and 4; and (iii)H = 12 T, curves 5 and
6. Curves 5 and 6 practically coincide.

In figure 6 we plotδω (in degrees) for I-DQWs and the same magnetic fields (cases
(i)–(iii)) as in figures 1 and 3. Near ¯hωG ≈ 10 meV, the dependence of the phase shiftδω of
ω is determined by a contribution of the virtual transitions which correspond to resonance
absorption at the frequencyωG, so |δω| is strongly enhanced in case (i).

In figure 7 we plotδω for I-DQWs and the same magnetic fields as in figure 4, i.e.,
only for case (i) (H = 2 T for curves 1 and 2,H = 3 T for curves 3 and 4, andH = 4 T
for curves 5 and 6). The solid curves in figure 7 demonstrate that with increasingH , the
maximum modulus ofδω near the resonance frequencyωG considerably increases before
the disappearance of the resonance behaviour at sufficiently highH .

In figure 8 we plotδω for II-DQWs and the same magnetic fields (cases (i)–(iii)) as in
figures 2 and 5.

We notice that in case (i) in figures 6–8 the solid and dashed curves have substantial
differences only forω ≈ ωG. In case (iii) in figures 6–8 the solid and dashed curves
practically coincide for allω. For case (ii) in figures 6 and 8 the solid and dashed curves
are clearly different in the vicinity ofω = 2T/h̄. So at this frequency the derivative of
curve 3 goes to∞ (i.e., in the collisionless approximation). However,δω is finite. Such
a behaviour is determined by theδω-dependence versus5(ω) and also by the smooth
dependence of Re5(ω) and sharp increase of|Im 5(ω)| near toω = 2T/h̄ (see equations
(15) and (24)). It is clear that this jump ofδω at ω = 2T/h̄ should be smaller for larger
|Re5(ω)|. Then, from curves 3 in figures 1 and 2 we conclude that the jump should be
stronger in figure 8 than in figure 6. Indeed, it is in agreement with the behaviour shown
by curves 3 in figures 6 and 8.
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Figure 7. Energy dependencies of the phase shift in I-DQWs for case (i):H = 2 T, curves 1
and 2;H = 3 T, curves 3 and 4; andH = 4 T, curves 5 and 6.

4.3. The transverse dipole moment

From (24) it follows thatδω is proportional to the imaginary part of the longitudinal–
transversal susceptibility. In the collisionless approximation, for a transparency region,
Reχ⊥(ω) ≡ 0 as follows from (16) and the properties of5(ω), if ω 6= ωG. Hence, for such
a transparency region, treatingδω, we also study the transverse dipole moment, orχ⊥(ω). In
addition, for the region where the absorption takes place (and also when the level broadening
is taken into account) we have Reχ⊥(ω) = −(c

√
ε/4πωc 1z)ξω. Therefore, in any region,

calculation ofδω and ξω gives us also Imχ⊥(ω) and Reχ⊥(ω), respectively. Because of
possible implications of the excitation of the transverse dipole moment by an in-plane electric
field, it is interesting to estimate the value of the dimensionless longitudinal–transversal
susceptibility. In figure 9 we plot Reχ⊥(ω) (dashed curves 1 and 3) and Imχ⊥(ω) (solid
curves 2, 4 and 6) for I-DQWs and the same magnetic fields (cases (i)–(iii)) as in figure 6.
The dashed curve 5 corresponds to 10 Reχ⊥(ω). Near to h̄ωG ≈ 10 meV, χ⊥(ω) as a
function of ω (curves 1 and 2 atH = 2 T) represents strong resonance behaviour and its
modulus can be about 12.5. The collisional broadening is taken into account for all of the
curves in figure 9.

5. Conclusion

In this article we have demonstrated peculiarities of the high-frequency response of electrons
in DQWs under an in-plane magnetic field. The frequencies, depending on the value
of the in-plane magnetic field and the DQW parameters, for which the peculiarities
pointed out can be observed, belong to the submillimetre region. Hence, experimental
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Figure 8. Energy dependencies of the phase shift in II-DQWs for the cases: (i)H = 2 T,
curves 1 and 2; (ii)H = 7 T, curves 3 and 4; and (iii)H = 10 T, curves 5 and 6. Curves 5
and 6 practically coincide.

observations are possible using both a standard technique for this spectral region and new
experimental methods (emission of a free-electron laser [17, 18] and transitional time-
domain spectroscopy of the emission under an ultrafast excitation of the heterostructure
[19]), developed recently for the THz region. As represented in section 4, numerical
estimates demonstrate the possibility of absorption and Voigt effect measurements in these
spectral regions. In addition,transformation of the y-component of the electric field
into oscillations of the dipole moment perpendicular to the DQWs, determined by the
susceptibilityχ⊥, appears to be sufficiently effective.

Let us list the assumptions which have been made in our calculations. We have assumed
that an in-plane magnetic field is sufficiently low that the approximation of ‘rigid’ (i.e.,
independent of1 andωc) orbitals is valid. It can be shown that further contributions due
to the magnetic field to the electron spectra and eigenfunctions of the DQWs are negligible
when the dimensionless parameterAH(d/π`H )4 is small in comparison with unity (here
`H is the magnetic length andAH ∼ 1). For the strongest magnetic field considered above,
H = 12 T, we estimate this parameter as 0.016 for the flat-band DQWs withd = 100 Å.
Hence, even in this case our approximation is well justified. We have used a collisionless
approximation or a simple assumption which implies a finite collisional broadening of peaks.
Moreover, the dependencies of0 on 1 and the magnetic field are assumed to be weak.
The random-phase approximation has been used: for the static case1 is assumed to be
a parameter controlled by the transverse voltage applied to the DQWs, while the high-
frequency response is considered without taking into account the exchange and correlation
contributions. The two-level tunnel approximation has been used, andT is assumed to
be independent ofH . Finally, we have used a simple electron band structure without
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Figure 9. Energy dependencies of the longitudinal–transversal susceptibility in I-DQWs for the
cases: (i)H = 2 T, curves 1 and 2; (ii)H = 8 T, curves 3 and 4; and (iii)H = 12 T, curves
5 and 6. The dashed curves 1 and 3 show Re[χ⊥(ω)]. The solid curves (2, 4, and 6) show
Im[χ⊥(ω)]. The dashed curve 5 corresponds to 10 Re [χ⊥(ω)]. All of the curves correspond to
20 = 0.2 meV.

nonparabolicity, or contributions of0 and X valleys, which has already been discussed in
the literature. None of these approximations change either the qualitative behaviour of the
dependencies considered or the numerical estimates given here.

In conclusion, the shapes of the spectral dependencies of the absorption and the Voigt
effect due to intersubband transitions of electrons in the DQWs under an in-plane magnetic
field are determined by the peculiarities of the dispersion laws of this system. Hence, their
direct measurement in the submillimetre (THz) spectral regions can provide a straightforward
method for investigation of such peculiarities. It is found that the depolarization effect
substantially modifies these spectral dependencies. It is shown that the Voigt effect and the
transverse dipole moment can be resonantly enhanced in the high-frequency transparency
region (ω > ωm). In addition, we have demonstrated the possibility of transformation of
the normally incident wave into transverse (to the DQW plane) dipole oscillations.
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